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Thermodiffusion �thermophoresis� in liquid mixtures is theoretically examined using a hydrodynamic ap-
proach. Thermodiffusion is related to the local temperature-induced pressure gradient in the liquid layer
surrounding the selected molecule and to the secondary macroscopic pressure gradient established in the
system. The local pressure gradient is produced by excess pressure due to the asymmetry of interactions with
surrounding molecules in a nonuniform temperature field. The secondary pressure gradient is considered an
independent parameter related to the concentration gradient formed by volume forces, calculated from the
generalized equations for mass transfer. Values of Soret coefficients for mixtures of toluene and n-hexane are
calculated using parameters in the literature. When the molecules are assumed to be similar in shape, the
calculated Soret coefficients are lower than the empirical values found in the literature. However, by introduc-
ing an asymmetry parameter, which is calculated from independent measurements of component diffusion in
the literature, very good agreement is obtained.
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I. BACKGROUND

When a liquid mixture is placed in a temperature gradient,
there is movement of the constituent components, generating
a concentration gradient. This coupling between temperature
and concentration gradients is known as thermodiffusion or
the Ludwig-Soret effect. Since its discovery by Ludwig �1�
and the first systematic investigations of thermodiffusion in
liquid mixtures by Soret �2�, the effect has been subject to
numerous experimental and theoretical studies. Investiga-
tions of the Ludwig-Soret effect in liquid mixtures typically
involve measurements of a so-called thermal diffusion coef-
ficient, an ordinary �mass� diffusion coefficient, or a ratio of
the two that is referred to as the Soret coefficient. Tools used
to measure the Soret coefficient in liquid mixtures include
the thermogravitational column �3� and thermal field-flow
fractionation �TFFF� �4�. Thermal diffusion coefficients are
measured by forced Rayleigh scattering �TDFRS� �5� and
beam deflection methods �6�. A variety of techniques are
used to measure mass diffusion coefficients, including
TDFRS and dynamic light scattering �7�. Data provided by
these methods have been used to compare values obtained by
molecular dynamic �MD� simulations �8,9�. A summary of
the information obtained by these methods can be found in
Refs. �10,11�.

TFFF has proven to be particularly adept at measuring
the Soret coefficients of dissolved polymers and suspended
particles. In one of the more comprehensive studies on
polymer thermodiffusion �12� by TFFF, the independence
of thermodiffusion on chain length and branching configura-
tion was demonstrated, as predicted by scaling
considerations �13,14�.

In a later study of polymers �15� dissolved in binary
solvent mixtures, the dependence of thermodiffusion on the
relative concentration of solvent components in specific
mixtures was found to be nonlinear. The curvature in these
relationships, which can be either positive or negative,

provides evidence for the existence of multiple forces
affecting the thermodiffusion of dissolved solutes in liquid
mixtures.

The independence of polymer thermodiffusion on chain
length and branching configuration means that the polymer
chain moves at the same velocity as that of the individual
monomer units �mers�, at least for homopolymers. Therefore,
we have modeled polymer thermodiffusion using a similar
approach as that used for particle thermophoresis �16�. This
hydrodynamic approach, which has been used to explain the
thermodiffusion of hydrophobic homopolymers in pure sol-
vents �17�, considers the molecules surrounding a selected
mer as a continuous medium, while the selected mer is con-
sidered a solid particle suspended in that medium. The flow
of liquid around the particle is caused by a local pressure
gradient in the surface layer of the particle, as defined by the
Navier-Stokes equation

��u = − ��loc + f loc, �1�

where u is the velocity of the liquid, �loc is the local pressure
distribution around the particle due to its interaction
with molecules of the liquid, � is the dynamic viscosity
of the liquid, and f loc is any local volume force in the liquid
around the particle. In a temperature or concentration gradi-
ent, the local pressure distribution is not uniform due to
asymmetry in the distribution of molecules around the
particle. The same asymmetry also causes a local volume
force on the particle. The validity of this approach does not
depend on the size of the particle, provided the size is com-
parable or larger than the solvent molecules, because the
model is based on the hydrodynamic motion of liquid in the
layer surrounding the particle. However, the model’s validity
does depend on the frequency of intermolecular collisions
being great enough to consider the solvent as a continuous
medium.
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In order to calculate the pressure gradient in Eq. �1�, we
use the condition of hydrostatic equilibrium in the absence of
a temperature and concentration gradient:

− ��loc + f loc = 0. �2�

Following the approach used in the theory of diffusiophore-
sis �18�, we showed �17� that the local pressure distribution
can be obtained from the condition of hydrostatic equilib-
rium in the surrounding liquid, where the local volume force
f loc is expressed through the intermolecular interaction po-
tentials:

d�loc
i

dr
+ �

j=1

N
� j

v j

d�ij

dr
= 0. �3�

Here, r is the radial coordinate for a spherical molecule, � j is
the volume fraction of molecules of the jth kind, v j is the
specific molecular volume occupied by the molecule of
the jth kind, and �ij is the interaction potential between mol-
ecules of the ith and jth kind. Equations �2� and �3� express
the simple condition that for local equilibrium, any local
volume force in the liquid is canceled by a local pressure
gradient.

For liquids with low electrical conductivity, such that
ions are absent and molecular dissociation does not occur
to a significant extent, only dipole-dipole interactions play a
role in the interaction potential �19�. Dipole-dipole
interactions include those between permanent dipoles �the
Keesom interaction�, those between permanent and induced
dipoles �the Debye induction interaction�, and those that
are induced spontaneously �the London or dispersion
interaction�. According to the Fowkes approach �19�, dipole-
dipole interactions have a common dependence on the dis-
tance between dipoles and may be written in the following
form �20�:

�ij�r� = −
16�AiAj�rirj�3

9r6 , �4�

where Ai and Aj are the Hamaker constants for the respective
liquids, and ri and rj are the molecular radii. Solving
Eq. �3� using the assumption of uniform density in the
surrounding liquid, we obtain the following equation for the
local pressure established around the dissolved molecule of
type i:

�loc
i = − �

j=1

N
� j

v j
�ij . �5�

Equation �5� defines the local excess pressure in the liquid
mixture due to the presence of a selected molecule of the ith
kind and its interaction with other molecules.

In the presence of an imposed temperature gradient and
consequent concentration gradient established by thermal ex-
pansion, the differentiation of Eq. �5� gives

��loc
i = �

j=1

N
� j

v j
� T��Tj�ij −

��ij

�T
� − �ij � � j , �6�

where �Tj =��ln v j� /�T is the cubic thermal expansion coef-
ficient of the surrounding molecules of type j.

The temperature dependence of the intermolecular inter-
action potential also causes, besides the pressure gradient, a
volume force that is defined by differentiation of the interac-
tion potential:

f loc
i = − �

j=1

N
� j

v j

��ij

�T
� T . �7�

In order to describe the hydrodynamic problem related
to thermophoresis and diffusiophoresis, Eqs. �6� and �7�
are substituted into Eq. �2�, which upon rearrangement
yields

��loc
i = �

j=1

N
�ij

v j
��Tj� j � T − �� j� . �8�

Equation �8� represents the expression for the local concen-
tration and temperature-induced pressure gradient, which
will be used to solve the hydrodynamic problem of liquid
flow around the selected particle. The resulting expression is
not related to any model equation of state for the liquid mix-
ture and contains only those parameters that can be obtained
independently.

Several authors have assumed the temperature depen-
dence of the intermolecular interaction potential to be
the main source of either a pressure gradient or a volume
force that is responsible for flow of liquid around a particle
�21–24�. In each case, the cancellation of the pressure
gradient by a volume force, or vice versa, was ignored.
In Ref. �24�, for example, the temperature dependence of
the Flory-Huggins interaction parameter and associated
temperature-induced force are assumed to be the main source
of polymer thermophoresis without any consideration of
the related pressure gradient. In fact, the temperature depen-
dence of the interaction potential is canceled by the resulting
volume force created, as outlined above. This cancellation
is implicit in the classical paper by Ruckenstein �25�, where
particle thermophoresis is based on the selective adsorption
of solutes in a dilute system. Thus, the temperature depen-
dence of the interaction energy cannot be responsible
for thermodiffusion itself in a hydrodynamic model. Only a
redistribution of the molecules in space due to thermal ex-
pansion can give a pressure gradient resulting in molecular
motion.

In solving Eq. �1� for a spherical particle, we use the
approach taken by Teubner �26�, which utilizes the general-
ized reciprocal theorem for invariance of the following
integral:
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�	
S

u��̂dS − �	
V

u� � �dV = ��	
S

u�̂�dS − ��	
V

u � ��dV .

�9�

Here, S is the outer surface of a moving body, V is the outer
volume surrounding this surface, and �̂ is the hydrodynamic
stress tensor expressed by the velocity gradient �27�. The
primed and unprimed parameters in Eq. �9� are interrelated
in two separate problems on the movement of the same body.
Using this theorem, we employ the results of Ref. �26�,
which relates particle phoresis to the local pressure gradient
and fluid velocity distribution in the space around a particle
moving with constant unit velocity U1�r�, where r is the
radius vector directed from the particle center to the obser-
vation point. The velocity distribution U1�r�, which corre-
sponds to the conditions U1�r=ri�=u0 and U1�r=��=0, is
defined as

U1�i��r� =
3

4

ri

r
�u0 + n0�u0n0�� +

1

4
� ri

r
�3

�u0 − 3n0�u0n0�� ,

�10�

where u0 and n0 are the unit vectors directed along the U1�i�
and radius vector r, respectively. Using the condition of
steady-state motion, where the sum of the hydrodynamic
friction, diffusion and thermophoretic forces acting on the
particle is equal to zero, we obtain the following general
expression for the particle velocity Ui:

Ui =
1

6	�ri
	

0

	

sin 
d


�	ri

�2	r2dr�
j=1

N
�ij

v j
��� j − �Tj� j � T�U1�i�, �11�

where 
 is the angle between r and the outer temperature
gradient �T.

Next, we substitute the expressions for the local pressure
gradient �Eq. �8�� and interaction potential �Eq. �4�� into Eq.
�11�. After carrying out some straightforward but cumber-
some calculations, we obtain the following expression for the
velocity of the selected particle:

Ui =
8ri

2

27�
�
j=1

N �AiAj

v j
��� j − �Tj� j � T� . �12�

Equation �12� allows for the introduction of the partial
diffusiophoretic mobility �cross-diffusion coefficient�, de-
fined as the velocity of a selected particle of the ith kind per
unit concentration gradient of the jth component:

bDij =
8ri

2

27�

�AiAj

v j
. �13�

Equation �12� also allows for the introduction of the partial
cross-diffusion factor SDij =bDij /Di, where Di=kT /6	�ri is
the Stokes-Einstein diffusion coefficient of the selected mol-
ecule. Using Eq. �13�, the partial cross-diffusion factor can
be cast in the following form:

SDij =
4vi

H

3v j

�AiAj

kT
, �14�

where vi
H= �4	 /3�ri

3 is the equivalent hydrodynamic volume
of the molecule.

Next, we introduce the partial thermophoretic mobility
�thermodiffusion coefficient�, which represents the velocity
of a selected particle of the ith kind per unit temperature
gradient in a surrounding medium �solvent� of pure jth
component:

bTij = − �Tj

8ri
2

27�

�AiAj

v j
. �15�

Using Eq. �15�, the partial thermodiffusion factor
STij =bTij /Di is defined as

STij = − �Tj

4vi
H

3v j

�AiAj

kT
. �16�

Next, we substitute these newly defined parameters into a
set of diffusion equations, in order to obtain the distribution
of component concentrations in a temperature gradient. Here,
however, we run into a problem related to a general defect in
the standard formulation of diffusion equations for concen-
trated systems. Standard approaches use N−1 diffusion
equations to define a multicomponent mixture of N compo-
nents. In this approach, the volume fraction �or other expres-
sion of concentration� of the last component �the solvent� is
obtained from the equation for conservation of mass, or from
the Gibbs-Duhem equation, rather than another �Nth� diffu-
sion equation �27,28�. This approach is often referred to as
the solvent reference frame in theories of mass diffusion and
thermodiffusion. Such an approach is reasonable when one is
considering a solvent that contains N−1 dissolved compo-
nents at low concentrations because the solvent can be logi-
cally selected as the Nth component with a concentration
distribution that follows from those of the other components.
However, this method fails when we consider systems hav-
ing multiple components with similar concentrations, so that
no single component can be unambiguously selected as the
“solvent” component. In such a situation, the selection of the
Nth �solvent� component is arbitrary. Consequently, N+1
equations must be employed for N components, representing
a mathematical problem with a nontrivial solution. A math-
ematical solution must exist that is independent of which
component is selected to be the solvent.

This fundamental flaw in standard approaches to diffusion
may arise from the assumption of an isobaric system, even
though it is generally accepted that an osmotic pressure gra-
dient should exist in nonuniform liquid mixtures. Thus, in
stationary liquid mixtures, a volume force will arise, which
must be balanced by a macroscopic pressure gradient �P, in
order to maintain hydrostatic equilibrium. We recently pro-
posed �29� an approach based on the obvious statement that
whenever a volume force acts on a system and/or a concen-
tration gradient is present, a pressure gradient will be estab-
lished spontaneously. In our approach, this spontaneous pres-
sure gradient plays the role of the �N+1�th unknown
function in the system of diffusion equations. The observable
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effect of this secondary pressure gradient on the process of
molecular diffusion or drift motion is identified as the baro-
diffusion force on a molecule:

fP
i = − v̄i � P . �17�

Here v̄i is the volume of molecules of the ith kind, which can
be expressed as the partial molecular volume and identified
with the change in system volume upon the addition of one
molecule of the given �ith� kind. A well-known example of a
barodiffusion force is the Archimedes force, where the pres-
sure gradient is caused by gravity.

When we take into account the secondary macroscopic
pressure gradient and associated barodiffusion force, the
symmetrized system of diffusion equations for a liquid mix-
ture placed in a temperature gradient takes the following
form:

��i

�t
= �
Di���i + �i� v̄i

kT
� P − �

j=1

N

SDij � � j

− �
j=1

N

STij� j � T�� �1 � i � N� . �18�

Using an Eq. �18� for each component and the equation
for conservation of mass,

�
i=1

N

�i = 1, �19�

we obtain the following equation for the macroscopic pres-
sure gradient:

�P = kT
− J + �i,j=1

N
�ibDij � � j + �i,j=1

N
�ibTij� j � T − �i=1

N
Di � �i

�i=1

N
Div̄i�i

. �20�

Here J=�i=1
N Ji is the net flux of substance through boundaries of the considered volume.

Substituting Eq. �20� into the system of diffusion equations yields the following system of symmetrized diffusion equations:

��i

�t
= �Di

� j�i

N
pij� j

� j=1

N
pij� j

� �i + �

− J − � j�i

N
Dj � � j + �i,j=1

N
bDij��� j − �Tj� j � T�� rj

2

ri
2�Aj

Ai
− pij�� j

� j=1

N
pij� j

�i �1 � i, j � N� ,

�21�

where pij = v̄ jDj / v̄iDi is the parameter characterizing the con-
tribution of barodiffusion. In Eq. �21�, the relationship
bTij =−�TjbDij is used, which follows from Eqs. �10� and
�12�.

The logical necessity for a macroscopic pressure
gradient is interconnected with the hydrodynamic approach
used to calculate thermodiffusion parameters. In this
approach, if the acting force established by the temperature
gradient is not compensated by another force or pressure
gradient, then thermodiffusion motion would occur even in a
pure liquid, which is hard to imagine. Equation �21�
eliminates this possibility by compensating the thermo-
phoretic force with a barodiffusion force described by
Eq. �17�.

The system that we will use to examine the consequences

of a macroscopic pressure gradient on the movement of mass
in response to an applied field is a binary liquid mixture
placed in a uniform temperature gradient. In this system, the
dependence of thermodiffusion and barrodiffusion on the
macroscopic pressure gradient can be seen in a relatively
simple form, especially if we ignore the flux of substance J

through boundaries in the system. However, it should be rec-
ognized that such fluxes could occur in a more complex sys-
tem. For example, such fluxes could result from adsorption-
desorption processes, where certain molecules dissolve into
the liquid at one wall and are removed at the opposite wall.
In a temperature gradient, this could arise from a temperature
dependence in the solubility or adsorption of solutes.

For this simple binary system without flux at the walls,
�2=� and �1=1−�, and Eq. �21� takes the following form:
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��

�t
= �

D1� + p�1 − ��D2 + bD22�1 −
v2

v1
�A1

A2
�� r1

2

r2
2�A1

A2
− p��1 − ���

p�1 − �� + �
� �

+ �

− J1 − J2 − bD22� r1
2

r2
2�A1

A2
− p���T1�1 − ��

v2

v1
�A1

A2
+ �T2�� � T�1 − ��

p�1 − �� + �
� . �22�

Here J1�2� are the fluxes of the respective components p= p21= v̄1D1 / v̄2D2 and Eq. �19� is utilized. For the macroscopic
pressure gradient in a binary mixture, we obtain

�P =
kT

v̄2�� + p�1 − ���
� 
−

J1 + J2

D2
+ �D1

D2
− 1� � � + SD22��1 −

v2

v1
�A1

A2
� � �

− ��T1�1 − ��
v2

v1
�A1

A2
+ �T2�� � T���1 − ��

r1
2

r2
2�A1

A2
+ �� . �23�

As with the standard approach, conservation of mass �Eq. �19�� can be used for the concentration distribution of one compo-
nent, but in our approach that component’s distribution also satisfies the respective symmetrized diffusion equation.

II. MAIN OUTCOMES AND RESULTS: STATIONARY BINARY MIXTURE IN A CONSTANT-TEMPERATURE GRADIENT

For the steady state system in an impermeable vessel, Eq. �22� takes the form

�� =

SD22� r1
2

r2
2�A1

A2
− p���T1�1 − ��

v2

v1
�A1

A2
+ �T2���1 − ���

D1

D2
� + p�1 − �� + SD22�1 −

v2

v1
�A1

A2
�� r1

2

r2
2�A1

A2
− p��1 − ���

� T . �24�

In many empirical studies of thermodiffusion, the distribution of component concentrations is characterized by the Soret
coefficient, described empirically as ST=−�� /��1−���T. Using Eq. �24�, ST can be expressed as

ST = −

SD22�v1
Hv̄2

v2
Hv̄1

�A1

A2
− 1���T1�1 − ��

v2

v1
�A1

A2
+ �T2��

� +
v̄1

v̄2

�1 − �� + SD22�1 −
v2

v1
�A1

A2
��v1

Hv̄2

v2
Hv̄1

�A1

A2
− 1��1 − ���

. �25�

Inserting the definition of SD22 from Eq. �14� into Eq. �25� yields

ST = −

4

3

v2
H

v2

A2

kT
�v1

Hv̄2

v2
Hv̄1

�A1

A2
− 1���T1�1 − ��

v2

v1
�A1

A2
+ �T2��

� +
v̄1

v̄2

�1 − �� +
4

3

v2
H

v2

A2

kT
�1 −

v2

v1
�A1

A2
��v1

Hv̄2

v2
Hv̄1

�A1

A2
− 1��1 − ���

. �26�

When the volume fraction of the second component � is
low, we have

ST =
4�T1

3

v2
H

v1

�A1A2

kT
�1 −

v1
H

v2
H

v̄2

v̄1

�A1

A2
� . �27�

An expression similar to Eq. �27� was obtained for the ther-
mal diffusion coefficient of an isolated molecule of one com-
ponent dissolved in another �29� by considering the action of
a spontaneously established macroscopic pressure gradient.
In that work, however, the macroscopic pressure gradient

was calculated directly as the source of a barophoretic force
that compensates the thermophoretic force applied to the sol-
vent molecules contained in a unit volume, in order to main-
tain the system at hydrostatic equilibrium. The introduction
of a barophoretic force in that work resulted in much better
agreement of the model with empirical values of the thermal
diffusion coefficients for polystyrene in several organic sol-
vents, compared to an earlier version of the theory where this
factor was not taken into account �17�.

When the volume fraction of the second component ap-
proaches unity, Eq. �26� is transformed into an equation simi-
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lar to Eq. �27�, except that the isolated molecule is the first
component dissolved in a solvent of the second component.
Comparing these two extremes, one can see that the sign of
the Soret coefficient for a binary mixture is defined by the
following factor:

1 −
v1

H

v2
H

v̄2

v̄1

�A1

A2
. �28�

Although both positive and negative Soret coefficients are
allowed, Eq. �28� does not allow for a sign change in ST with
changes in the volume fraction of the components, which is
contrary to empirical observations �5�. In certain mixtures,
however, such a sign change could occur from the tempera-
ture dependence of the parameters, particularly in mixtures
where the value expressed by Eq. �28� is close to zero. Inside
a thermal diffusion cell, a change in the sign of ST would
occur at a position that varies with the hot- and cold-wall
temperatures. In a given cell with given temperature param-
eters and a fixed observation point, the effect would be mani-
fested as a change in the measured sign of ST as a function of
composition. A more quantitative discussion of this effect
would require more precise information on the temperature
dependence of the interaction potentials than that currently
available and is therefore beyond the scope of this work.

Another possible explanation for the measured change in
sign of ST is thermoosmotic flow �convection�, which can be

established even in thin thermodiffusion cells �20�. Such
flow depends on the interaction of liquid molecules with the
cell walls, and the direction of the resulting movement is
defined by a parameter similar to that given by Eq. �28�.
Consequently, empirical results obtained in thermodiffusion
cells depend on the wall material, which may explain the
significant differences published in the literature. For ex-
ample, in Ref. �30� a variation of ±50% is reported for values
of ST in toluene/n-hexane mixtures collected from five dif-
ferent sources.

Consideration of thermoosmotic flow and its role in ther-
modiffusion measurements is beyond the scope of this work.
For the present, we will compare the predictions of our
model with a self-consistent set of empirical data and show
that our results are at least in qualitative agreement with that
data. For our initial comparison we simplify Eq. �26�, which
contains three different volume parameters for each compo-
nent. These parameters include the partial molecular volume
v̄1�2�, the hydrodynamic volume v1�2�

H , and the specific mo-
lecular volume v1�2�. Because not all of these parameters are
readily available for any system, we transform Eq. �26� into
a form that contains the ratios of each volume parameter for
the two components, so that for molecules with similar
shapes we can assume the ratios of the different types of
volume parameters to be about the same. With this assump-
tion, it is only necessary to have one of the three types of
volume parameters. Of the three, the specific molecular vol-
umes are most readily available. The specific molecular vol-
umes and their respective radii can be obtained using the
following equation:

v1�2� =
4	r1�2�

3

3
=

M1�2�

Nad1�2�
. �29�

Here M1�2� is the molar mass, d1�2� is the density of the
respective component, and Na is Avogadro’s number. The
resulting simplified version of Eq. �26� is applicable to sys-
tems in which the different molecules have a similar shape
and aspect ratio:

ST = −

4

3

A2

kT
��A1

A2
− 1���T1�1 − ��

v2

v1
�A1

A2
+ �T2��

� +
v1

v2
�1 − �� +

4

3

A2

kT
�v2

v1
�A1

A2
− 1��1 −�A1

A2
��1 − ���

. �30�

Equation �30� is used below to compare the proposed
theory with the most consistent subset of experimental data
that could be found in Ref. �30�. These data include the con-
centration dependence of the Soret coefficient for mixtures
of toluene and n-hexane, as measured by thermal diffusion
forced Rayleigh scattering �31�, a thermal diffusion cell �6�,

and a thermogravitational column �32�. The necessary pa-
rameters and their sources are present in Table I. For
n-hexane, the Hamaker constant was not available and was
therefore calculated from the following expression for the
dependence of surface tension � on A in nonionic liquids
�34�:

TABLE I. Solvent parameters.

n-Hexane Toluene

Molar mass M �g mol−1� 86.2 �33� 92.1 �5�
Density d �g/cm3� 0.66 �35� 0.87 �35�
Thermal expansion �T�103 �K−1� 1.06 �36� 1.10 �36�
Surface tension � �mN/m� 25.64 �35� 28.78 �35�

25.24 �36� 28.52 �36�
Hamaker constant A�1013 �erg� 5.57 �35� 5.40 �34�
Viscosity ��104 �N s/m2� 3.1 �33� 5.9 �33�
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�i =
Ai

48	ri
2 . �31�

The radius ri in Eq. �31� was calculated from Eq. �29� using
solvent parameters from Ref. �35�. Values of the surface ten-
sion were obtained from Refs. �35,36�. This approach to cal-
culating molecular radii seems satisfactory considering that
we need only the ratio of the Hamaker constants to calculate
Soret coefficients from the model.

Because experimental data are expressed as a function of
the mole fraction m of the second component �toluene�, we
can transform Eq. �30� using the relationship

� =
m

v1

v2
+ �1 −

v1

v2
�m

. �32�

For this work, we neglect the difference between
volume fraction and mole fraction for the miscible compo-
nents under consideration, which have similar volume
parameters.

In order to illustrate the sensitivity of the Soret coefficient
to values of the Hamaker constants, Fig. 1 contains two plots
of Eq. �30�, each calculated using a different source for the
surface tension values used to estimate the ratio of Hamaker
constants according to Eq. �31�. As illustrated in the figure, a
difference in surface tension of 1%–2% yields Soret coeffi-
cients that differ by a factor of 5–6. This extremely high
sensitivity arises from the fact that Hamaker constants for
miscible components are very close to one another, making it
difficult to perform a robust analysis of the model. Neverthe-
less, even the higher values predicted from Eq. �30� are 10
times lower than measured values, which are plotted in Fig.
2. However, the ratio of two Soret coefficients calculated

from Eq. �30� matches the ratio of measured values quite
well. The calculated ratio can be expressed by the following
equation, which is obtained from Eq. �26�:

ST�1�
ST�0�

=
�T2

�T1
�v1

v2
�2�A2

A1
. �33�

Using the solvent parameters in Table I, for example, we
calculate ST�1� /ST�0�=1.55, while the empirical ratio is 1.6.
The good agreement between theory and experiment indi-
cates that the ratio of Hamaker constants is accurate, even if
a systematic error exists in individual values.

The systematic error that leads to a discrepancy between
theory and experiment for individual values of ST may be
eliminated by considering the asymmetry parameter
v1

Hv̄2 /v2
Hv̄1, which was set to a value of unity in simplifying

Eq. �26�. Even relatively small differences in shape between
the molecules can significantly change the value of the
parameter:

v1
Hv̄2

v2
Hv̄1

�A1

A2
− 1.

We can calculate the ratio v̄2 / v̄1 in the asymmetry parameter
using Eq. �29� and known values of the component molecu-
lar weights and densities. We can calculate the ratio v1

H /v2
H in

the asymmetry parameter using the Stokes-Einstein equation
and measured values of the diffusion coefficients:

v1
H

v2
H = �D2�1

D1�2
�3

. �34�

Using Eqs. �29� and �34� along with the viscosity and mo-
lecular weight data contained in Table I and diffusion coef-
ficients taken from Ref. �6�, we calculate an asymmetry pa-

FIG. 1. Theoretical dependence of ST on the volume fraction
� of toluene in n-hexane/toluene mixtures, using the assumption
of spherical molecules ��v1

H /v2
H�v̄2 / v̄1=1� and a Hamaker

constant ratio calculated from Eq. �31� and surface tension data
from the literature. The upper curve is obtained using surface ten-
sion values from Ref. �35�. The lower curve �dashes� is calculated
using surface tension values from Ref. �36�. T=300 K for all
calculations.

FIG. 2. Dependence of ST on the volume fraction � of toluene in
n-hexane/toluene mixtures. Experimental points: ��� from Ref.
�31�, ��� and ��� from Ref. �6�, and ��� from Refs. �3,32�. The
solid curve is a fit to Eq. �26� using asymmetry parameter
�v1

H /v2
H�v̄2 / v̄1=0.38. T=300 K for all calculations.
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rameter of 0.38 for the n-hexane/toluene system under
consideration.

Equation �26� is plotted in Fig. 2 using the Hamaker
constants listed in Table I, a value of 0.38 for the asymmetry
parameter, and 4

3 �v2
H /v2�A2 /kT as a fitting parameter to

the most consistent set of data points from Ref. �30�, which
is a compilation of data from several studies. We note
that other data in Ref. �30� varied by as much as 50% from
the values plotted in Fig. 2, reflecting the large variability in
empirical values of ST measured by different techniques.
The best-fit value of 4

3 �v2
H /v2�A2 /kT=5.4 corresponds to

v2
H /v2�0.3. This ratio of molecular volumes matches the

value calculated from Eqs. �29� and �34� using D=2.4
�10−5 cm2/s reported for toluene at 298 K in Ref. �6�.
This same value of 4

3 �v2
H /v2�A2 /kT=5.4 was also recently

used to obtain good agreement between theory and
experiment for the dependence of the effective diffusion co-
efficient on volume fraction in mixtures of toluene and
n-hexane �37�.

It would be desirable to check the model with other sol-
vent mixtures. Unfortunately, only a small number of solvent
mixtures exist for which a systematic study of thermal diffu-
sion has been completed. Of these, very few have yielded a
consistent set of data, and of these, toluene/n-hexane was the
only system for which we could find the required solvent
parameters. However, with the renewed interest in both or-
dinary �mass� and thermal diffusion, more empirical data
will soon be available. The consistency and reliability of
these new data will be greatly improved due to significant

advances in the design and implementation of instruments
being used in these studies.

III. CONCLUSIONS

Our proposed hydrodynamic approach to thermodiffusion
in concentrated liquid mixtures requires the introduction
of a macroscopic pressure gradient into the mass transfer
equations. The approach leads to the establishment of a
closed system of equations for the resulting component con-
centrations in an established temperature gradient. Predicted
Soret coefficients are highly sensitive to the inputted values
of the Hamaker constants, and this sensitivity increases for
highly miscible liquids where the Hamaker constants are
similar in value. The model also predicts the Soret effect to
be affected by differences in the shape of the component
molecules. It is difficult to construct a robust validation test
of the model due to the large variability of Hamaker con-
stants reported in the literature. On the other hand, the sen-
sitivity of the Soret effect to molecular interaction energies
suggests that accurate measurements of the Soret coefficient
could be used to calculate such energies with high accuracy
and precision.
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